Rutgers University: Algebra Written Qualifying Exam
August 2015: Problem 5 Solution

Exercise. Let ( = % and R denote the subring Z[(] of C.
(a) Show that R=Z+ (- Z

Obviously Z + ¢ - Z C Z[¢] = R.
Now, suppose P € Z[(].
Then P = a,("+- -+ a1{ + ag for some n € Z>, where a;, € Z < so. check powers of ¢
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Thus,peZ+(-Z
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So, R=Z+(-Z

(b) For a € R, show that |a]? = aa is an integer, where @ is the complex conjugate.
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(c) For a € C show that there are ¢ € R, and r € C, with

a=q+rand|rl <1

Since a € C, a = ag + ayt for some ag, a; € R.
Let ge R,soq=qo+q1 (ILQ‘/E)
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So, for a € C, d¢g € R and r € C s.t.

a=qg+rand|r| <1

(d) (Division algorithm) Show that for a,b € R with b # 0. there are ¢, € R with

a=0bq+rand |r| <|b

This is similar to part (c¢). How can we use part (c)?

Solution.

Let a,b € R. Then ¢ € C.
By part (¢), 3¢ € R and ¢ € C with |rg| < 1 s.t.

=q+r
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= a = bq + br
=bg+r where r := brg
7| = 1] - |ro| < [b]

Moreover, since r = a — bg and a, b, q € R, it follows that r € R.
Thus, the division algorithm holds.




(e) Show that R is a principal ideal domain.

The division algorithm holds in R
—> R is a Euclidean domain
=—> R is a principal ideal domain

More Details:
A principal ideal domain is an integral domain (i.e. commutative ring with multiplicative
identity and no zero divisors) in which every proper ideal can be generated by a single element.

It is obviously an integral domain, so lets just prove it is a principal ideal.
I = (0) is obviously a principal ideal
Suppose I # (0) and let a € I be such that |a| < |z| for all z € T 2 # 0 (assume minimality)

Then (a) C I
Letbel
By the division algorithm dg,r € R s.t.
b=aq+r where |r| < |al
= b —aqg =rel
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|r| < |a| but |a| has minimal value
— |r|=0
— b—aq=0
— b=uaq
= be (a)
— I C (a)

Thus I = (a) and R is a principal ideal domain




