Rutgers University: Algebra Written Qualifying Exam

August 2015: Problem 5 Solution

Exercise. Let $\zeta=\frac{1+\sqrt{-3}}{2}$. and R denote the subring $\mathbb{Z}[\zeta]$ of \mathbb{C}.
(a) Show that $R=\mathbb{Z}+\zeta \cdot \mathbb{Z}$

Solution.

Obviously $\mathbb{Z}+\zeta \cdot \mathbb{Z} \subseteq \mathbb{Z}[\zeta]=R$.
Now, suppose $P \in \mathbb{Z}[\zeta]$.
Then $P=a_{n} \zeta^{n}+\cdots+a_{1} \zeta+a_{0}$ for some $n \in \mathbb{Z}_{\geq 0}$ where $a_{k} \in \mathbb{Z} \leftarrow$ so, check powers of ζ

$$
\text { Note: } \quad \begin{aligned}
& \zeta=\frac{1+\sqrt{-3}}{2} \\
& \qquad \begin{aligned}
\zeta^{2} & =\left(\frac{1+\sqrt{-3}}{2}\right)^{2} \\
& =\frac{1-3+2 \sqrt{-3}}{4} \\
& =\frac{-1+\sqrt{-3}}{2} \\
& =-1+\frac{1+\sqrt{-3}}{2} \in \mathbb{Z}+\zeta \cdot \mathbb{Z} \\
\zeta^{3} & =\left(\frac{1+\sqrt{-3}}{2}\right)\left(\frac{-1+\sqrt{-3}}{2}\right) \\
& =\frac{-1-3}{2} \\
& =-2 \in \mathbb{Z}
\end{aligned}
\end{aligned}
$$

So, for $k \equiv 0 \quad \bmod 3, \quad a_{k} \zeta^{k} \in \mathbb{Z}$
For $k \equiv 1 \bmod 3, \quad a_{k} \zeta^{k} \in \zeta \cdot \mathbb{Z}$
For $k \equiv 2 \quad \bmod 3, \quad a_{k} \zeta^{k} \in \mathbb{Z}+\zeta \cdot \mathbb{Z}$
Thus, $p \in \mathbb{Z}+\zeta \cdot \mathbb{Z}$
$\Longrightarrow \mathbb{Z}[\zeta] \subseteq \mathbb{Z}+\zeta \cdot \mathbb{Z}$.
So, $R=\mathbb{Z}+\zeta \cdot \mathbb{Z}$
(b) For $a \in R$, show that $|a|^{2}=a \bar{a}$ is an integer, where \bar{a} is the complex conjugate.

Solution.

$$
a \in R \Longrightarrow \quad \begin{aligned}
a & =b+c\left(\frac{1+\sqrt{-3}}{2}\right)=\frac{2 b+c+c \sqrt{-3}}{2} \quad b, c, \in Z \\
|a|^{2}=a \bar{a} & =\left(\frac{2 b+c+c \sqrt{-3}}{2}\right)\left(\frac{2 b+c-c \sqrt{-3}}{2}\right) \\
& =\frac{(2 b+c)^{2}+3 c^{2}}{4}=\frac{4 b^{2}+4 b c+4 c^{2}}{4} \\
& =b^{2}+b c+c^{2} \in \mathbb{Z}, \text { since } b, c \in \mathbb{Z}
\end{aligned}
$$

(c) For $a \in \mathbb{C}$ show that there are $q \in R$, and $r \in \mathbb{C}$, with

$$
a=q+r \text { and }|r|<1
$$

Solution.

Since $a \in \mathbb{C}, a=a_{0}+a_{1} i$ for some $a_{0}, a_{1} \in \mathbb{R}$.
Let $q \in R$, so $q=q_{0}+q_{1}\left(\frac{1+i \sqrt{3}}{2}\right)$
Want q as close as possible to $a . \Longrightarrow \frac{q_{1} \sqrt{3}}{2}$ close to a_{1} and $q_{0}+\frac{q_{1}}{2}$ close to a_{0}
where q_{1} is s.t. $\quad\left|\frac{q_{1} \sqrt{3}}{2}-a_{1}\right|<\left|\frac{\left(q_{1}-1\right) \sqrt{3}}{2}-a_{1}\right|$ and $\left|\frac{q_{1} \sqrt{3}}{2}-a_{1}\right|<\left|\frac{\left(q_{1}+1\right) \sqrt{3}}{2}-a_{1}\right|$

$$
\Longrightarrow \quad\left|\frac{q_{1} \sqrt{3}}{2}-a_{1}\right|<\frac{\sqrt{3}}{2}
$$

and q_{0} is s.t. $\left|q_{0}+\frac{q_{1}}{2}-a_{0}\right|<\left|q_{0} \pm \frac{q_{1}}{2}-a_{0}\right|$

$$
\begin{aligned}
& \Longrightarrow\left|q_{0}+\frac{q_{1}}{2}-a_{0}\right|<\frac{1}{2} \\
a & =q+\underbrace{\left(a_{0}-q_{0}-\frac{q_{1}}{2}\right)+\left(a_{1}-\frac{a_{1}}{2} \sqrt{3}\right)}_{=: r} i \\
|r| & =\sqrt{\left(a_{0}-q_{0}-\frac{q_{1}}{2}\right)^{2}+\left(a_{1}-\frac{q_{1}}{2} \sqrt{3}\right)^{2}} \\
& <\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=1
\end{aligned}
$$

So, for $a \in \mathbb{C}, \exists q \in R$ and $r \in \mathbb{C}$ s.t.

$$
a=q+r \text { and }|r|<1
$$

(d) (Division algorithm) Show that for $a, b \in R$ with $b \neq 0$. there are $q, r \in R$ with

$$
\underbrace{a=b q+r \text { and }|r|<|b|}_{\text {milar to part (c). How can we use part (c)? }}
$$

Solution.

Let $a, b \in R$. Then $\frac{a}{b} \in \mathbb{C}$.
By part (c), $\exists q \in R$ and $r_{0} \in \mathbb{C}$ with $\left|r_{0}\right|<1$ s.t.

$$
\begin{aligned}
\frac{a}{b} & =q+r_{0} \\
\Longrightarrow a & =b q+b r_{0} \\
& =b q+r \quad \text { where } r:=b r_{0} \\
|r| & =|b| \cdot\left|r_{0}\right|<|b| \quad
\end{aligned}
$$

Moreover, since $r=a-b q$ and $a, b, q \in R$, it follows that $r \in R$.
Thus, the division algorithm holds.
(e) Show that R is a principal ideal domain.

Solution.

The division algorithm holds in R
$\Longrightarrow R$ is a Euclidean domain
$\Longrightarrow R$ is a principal ideal domain

More Details:

A principal ideal domain is an integral domain (i.e. commutative ring with multiplicative identity and no zero divisors) in which every proper ideal can be generated by a single element.

It is obviously an integral domain, so lets just prove it is a principal ideal.
$I=(0)$ is obviously a principal ideal
Suppose $I \neq(0)$ and let $a \in I$ be such that $|a| \leq|x|$ for all $x \in I x \neq 0$ (assume minimality) Then $(a) \subseteq I$
Let $b \in I$
By the division algorithm $\exists q, r \in R$ s.t.

$$
\begin{aligned}
b & =a q+r \\
\Longrightarrow \underbrace{b}_{\in I}-\underbrace{a q}_{\in I} & =r \in I \\
|r| & <|a| \text { but }|a| \text { has minimal value } \\
\Longrightarrow|r| & =0 \\
\Longrightarrow b-a q & =0 \\
\Longrightarrow b & =a q \\
\Longrightarrow b & \in(a) \\
\Longrightarrow I & \subseteq(a)
\end{aligned}
$$

Thus $I=(a)$ and R is a principal ideal domain

