Rutgers University: Algebra Written Qualifying Exam August 2015: Problem 5 Solution

Exercise. Let $\zeta = \frac{1+\sqrt{-3}}{2}$ and R denote the subring $\mathbb{Z}[\zeta]$ of \mathbb{C} .

(a) Show that $R = \mathbb{Z} + \zeta \cdot \mathbb{Z}$

Solutio

Solution. Obviously $\mathbb{Z} + \zeta \cdot \mathbb{Z} \subseteq \mathbb{Z}[\zeta] = R.$ Now, suppose $P \in \mathbb{Z}[\zeta]$. Then $P = a_n \zeta^n + \cdots + a_1 \zeta + a_0$ for some $n \in \mathbb{Z}_{\geq 0}$ where $a_k \in \mathbb{Z} \leftarrow$ so, check powers of ζ $\zeta = \frac{1 + \sqrt{-3}}{2}$ Note: $\zeta^2 = \left(\frac{1+\sqrt{-3}}{2}\right)^2$ $=\frac{1-3+2\sqrt{-3}}{4}$ $=\frac{-1+\sqrt{-3}}{2}$ $= -1 + \frac{1 + \sqrt{-3}}{2} \in \mathbb{Z} + \zeta \cdot \mathbb{Z}$ $\zeta^3 = \left(\frac{1+\sqrt{-3}}{2}\right) \left(\frac{-1+\sqrt{-3}}{2}\right)$ $=\frac{-1-3}{2}$ $= -2 \in \mathbb{Z}$ $a_k \zeta^k \in \mathbb{Z}$ So, for $k \equiv 0 \mod 3$, $a_k \zeta^k \in \zeta \cdot \mathbb{Z}$ For $k \equiv 1 \mod 3$, $a_k \zeta^k \in \mathbb{Z} + \zeta \cdot \mathbb{Z}$ For $k \equiv 2 \mod 3$, Thus, $p \in \mathbb{Z} + \zeta \cdot \mathbb{Z}$ $\implies \mathbb{Z}[\zeta] \subseteq \mathbb{Z} + \zeta \cdot \mathbb{Z}.$ So, $R = \mathbb{Z} + \zeta \cdot \mathbb{Z}$

(b) For $a \in R$, show that $|a|^2 = a\overline{a}$ is an integer, where \overline{a} is the complex conjugate.

$$a \in R \implies a = b + c\left(\frac{1+\sqrt{-3}}{2}\right) = \frac{2b+c+c\sqrt{-3}}{2} \qquad b, c, \in \mathbb{Z}$$
$$|a|^2 = a\overline{a} = \left(\frac{2b+c+c\sqrt{-3}}{2}\right) \left(\frac{2b+c-c\sqrt{-3}}{2}\right)$$
$$= \frac{(2b+c)^2+3c^2}{4} = \frac{4b^2+4bc+4c^2}{4}$$
$$= b^2+bc+c^2 \in \mathbb{Z}, \text{ since } b, c \in \mathbb{Z}$$

(c) For $a \in \mathbb{C}$ show that there are $q \in R$, and $r \in \mathbb{C}$, with

$$a = q + r$$
 and $|r| < 1$

Solution. Since $a \in \mathbb{C}$, $a = a_0 + a_1 i$ for some $a_0, a_1 \in \mathbb{R}$. Let $q \in R$, so $q = q_0 + q_1 \left(\frac{1+i\sqrt{3}}{2}\right)$ Want q as close as possible to a. $\implies \frac{q_1\sqrt{3}}{2}$ close to a_1 and $q_0 + \frac{q_1}{2}$ close to a_0 where q_1 is s.t. $\left|\frac{q_1\sqrt{3}}{2} - a_1\right| < \left|\frac{(q_1 - 1)\sqrt{3}}{2} - a_1\right|$ and $\left|\frac{q_1\sqrt{3}}{2} - a_1\right| < \left|\frac{(q_1 + 1)\sqrt{3}}{2} - a_1\right|$ $\implies \left|\frac{q_1\sqrt{3}}{2} - a_1\right| < \frac{\sqrt{3}}{2}$ and q_0 is s.t. $\left|q_0 + \frac{q_1}{2} - a_0\right| < \left|q_0 \pm \frac{q_1}{2} - a_0\right|$ $\implies \left|q_0 + \frac{q_1}{2} - a_0\right| < \left|\frac{q_0}{2} + \frac{q_1}{2} - a_0\right|$ $\implies \left|q_0 + \frac{q_1}{2} - a_0\right| < \frac{1}{2}$ $a = q + \left(\frac{a_0 - q_0 - \frac{q_1}{2}\right) + \left(a_1 - \frac{a_1}{2}\sqrt{3}\right)i, \quad r = \left(a_0 - q_0 - \frac{q_1}{2}\right) + \left(a_1 - \frac{q_1}{2}\sqrt{3}\right)i$ $|r| = \sqrt{\left(a_0 - q_0 - \frac{q_1}{2}\right)^2 + \left(a_1 - \frac{q_1}{2}\sqrt{3}\right)^2}$ $< \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$ So, for $a \in \mathbb{C}$, $\exists q \in R$ and $r \in \mathbb{C}$ s.t. a = q + r and |r| < 1

(d) (Division algorithm) Show that for $a, b \in R$ with $b \neq 0$, there are $q, r \in R$ with

$$a = bq + r$$
 and $|r| < |b|$

This is similar to part (c). How can we use part (c)?

Solution. Let $a, b \in R$. Then $\frac{a}{b} \in \mathbb{C}$. By part (c), $\exists q \in R$ and $r_0 \in \mathbb{C}$ with $|r_0| < 1$ s.t. $\frac{a}{b} = q + r_0$ $\implies a = bq + br_0$ = bq + rwhere $r := br_0$ $|r| = |b| \cdot |r_0| < |b|$ Moreover, since r = a - bq and $a, b, q \in R$, it follows that $r \in R$. Thus, the division algorithm holds. (e) Show that R is a principal ideal domain.

Solution. The division algorithm holds in R \implies R is a Euclidean domain $\implies R$ is a principal ideal domain More Details: A principal ideal domain is an integral domain (i.e. commutative ring with multiplicative identity and no zero divisors) in which every proper ideal can be generated by a single element. It is obviously an integral domain, so lets just prove it is a principal ideal. I = (0) is obviously a principal ideal Suppose $I \neq (0)$ and let $a \in I$ be such that $|a| \leq |x|$ for all $x \in I$ $x \neq 0$ (assume minimality) Then $(a) \subset I$ Let $b \in I$ By the division algorithm $\exists q, r \in R$ s.t. where |r| < |a|b = aq + r $\implies \underbrace{b}_{\in I} - \underbrace{aq}_{\in I} = r \in I$ |r| < |a| but |a| has minimal value $\implies |r| = 0$ $\implies b - aq = 0$ $\implies b = aq$ $\implies b \in (a)$ $\implies I \subseteq (a)$ Thus I = (a) and R is a principal ideal domain